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The mechanics of an organized wave in turbulent 
shear flow. Part 2. Experimental results 

By A. K. M. F. HUSSAINI AND W. C. REYNOLDS 
Department of Mechanical Engineering, Stanford University 

(Received 18 October 1971) 

Results on the behaviour of controlled wave disturbances introduced artificially 
into turbulent channel flow are reported. Weak plane-wave disturbances are 
introduced by vibrating ribbons near each wall. The amplitude and relative phase 
of the streamwise component of the induced wave is educed from a hot-wire 
signal, allowing the wave speed, the attenuation characteristics and the wave 
shape to be traced downstream. These results form a basis for evaluation of 
closure models for the dynamical equations describing wave components in 
shear-flow turbulence. 

1. Recapitulation 
This paper is a direct continuation of Hussain & Reynolds (1970a), hereafter 

referred to as I, and summarizes all the key experimental results given in our 
report Hussain & Reynolds (19704,  hereafter referred to as R. Connexions with 
theoretical models will be discussed in part 3 (Reynolds & Hussain 1972). The 
problem at hand is the description of the behaviour of controlled periodic 
(sinusoidal) disturbances artificially introduced into a turbulent channel flow. 
Motivations for this work are elaborated in I and R, and include the current 
interest in possible wave theories of turbulent shear flow (Landahl 1967). 

The basic apparatus (see figure 2 of I) involves an air flow channel with a gap of 
2.5 inches in which vibrating ribbons located in the flow on opposite sides of the 
channel are used to introduce sinusoidal disturbances of a controlled frequency 
and phase into fully developed two-dimensional turbulent channel flow (see 
figure 1). The objective is to measure the propagation and decay characteristics 
of disturbances of chosen frequencies, and to relate these measurements to 
theoretical treatments. The basic flow was described in I$ and is documented in 
greater detail in R. Particular attention was paid to the elimination of residual 
large-scale motions arising from the entrance conditions, and the long length of 
this apparatus (length/gap ratio of 230) gives a degree of turbulence-structure 
development not previously achieved. 

The ribbon vibration is produced by passing an alternating current through 
the ribbons, which are located in a steady magnetic field. The ribbons may be 
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$ In figure 4 of I the ordinate should be (0, 2.0) instead of (0, 20). 
Houston, Texas. 
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FIGURE 1. Schematic diagram of test flow. 
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FIGCRE 2. Measured ( a )  2 amplitude and ( b )  G phase distributions at  25 Hz. 
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FIGURE 3. Measured (a) ii amplitude and ( b )  .ii phase distributions at  50 Hz. 

moved so as to produce either symmetric or antisymmetric disturbances in the 
disturbance velocity field. The ribbon current forms a useful reference signal for 
analysis of the hot-wire data. Care was taken to maintain a fixed ribbon amplitude 
for all runs a t  a given frequency, thus permitting surveys taken on different days 
to be properly related. 

It is convenient to represent the velocity field as a superposition of three 
components: 

Here ;lii is the mean (time-averaged) contribution, (6, is the periodic contribution 
(the organized wave) and u{ corresponds to the turbulent motion. Straightforward 
time-averaging determines Z7:. In  order to measure 4, we use a phase-averaging 
technique (see I) ; the phase a,verage is defined as the average a t  a given phase in 
the cycle of the basic wave (i.e. the reference signal). A wave form eductor, a 
device which can simultaneously determine the phase average a t  100 points in 
the cycle of the basic wave, is used for this process. The eductor samples the 
signal at  100 points in each cycle and computes a running average a t  each of 
these points. In  our experiments the wave component is very weak, so a large 
ensemble of cycles (typically LO5) is required. The phase average of the signal then 
gives the sum of the mean and the organized wave. Denoting the phase average 

(1.2) 
by (>, we have 

In  effect, the phase-averaging process rejects the random background turbu- 
lence and extracts the organized motions from the total signal. 

A linearized constant-temperature hot-wire anemometer is used to measure 
the streamwise velocity a t  selected points downstream of the ribbon. The 

(1.1) u, = u,+?zi+u;. 

(Ui) = ui + G,. 
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FIGURE 4. Measured (a)  ii amplitude and ( b )  .ii phase distributions at  75 Hz. 

hot-wire signal is first ampliiied with an ax. coupled amplifier, which rejects the 
d.c. component, and the amplified signal is then fed to the wave form eductor, 
which provides the desired phase-averaged signal as an output. The educed 
wave form is in general slightly non-sinusoidal, and the sinusoidal component is 
extracted by analysing the continuous educed signal with a lock-in amplifier. A 
schematic diagram of the circuitry is given in I; for more details the reader should 
refer to R. 

Suppose that we represent the reference signal (ribbon voltage) by 

e, = a cos (wt) (1.3) 

and the educed hot-wire signal corresponding to the streamwise component 6, 
at a fixed point by B, = IGll cos (wt-  q5). (1.4) 

Then the signal analysis processes outlined above give us both the amplitude 
I.iill and phase q5 of B, locally. 

We denote the distance downstream from the ribbon by x, the distance from 
one wall by y and the chaiinel half-width by S (figure 1). All measurements 
reported here were taken a t  the channel centre-height (z = 0) with a centre-line 
velocity Uo = 21*9ft/s, corresponding to a Reynolds number UoS/v of 13800. 
Spanwise surveys indicate that the waves remain quite two-dimensional as they 
progress downstream, hence we have treated the disturbance wave as two- 
dimensional. For documentahion see R. 

In  I we reported partial data at 100 Hz. Here we report the data for 25, 50,75 
and 100Hz. For more detail see R. 
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FIGURE 5. Measured ( a )  .ii amplitude and (a) .ii phase distributions at 100 Hz. 

2. Wave data 
The data are given in figures 2-5. The phase plots show q5vs. y/6 a t  selected 

streamwise stations XIS. Note that the origin of these phase plots corresponds to 
the channel centre-line (y/6 := 1) and that the circumference of the polar plots 
corresponds to the wall (y/6 =: 0). The bars on the data indicate the experimental 
uncertainty as estimated from selected repetitions of the experiments. These data 
were taken with the ribbons vibrating in the same direction a t  the same time; 
this produces a disturbance which is antisymmetric in the streamwise fluctuation 
Q and symmetric in the cross-stream fluctuation 6. Surveys in the range 

1 < y/s < 2 

confirm this antisymmetry in G (see R). 
The magnitudes of the amplitudes should be noted. Observe that the r.m.s. 

disturbance amplitude is typically one-thousandth of the centre-line mean 
velocity U,, or a few hundredths of the turbulence 1.111.5. velocity. Thus we are 
able to recover an extremely weak organized component from a background of 
finite fluctuations. 

Let us first concentrate on the amplitude behaviour. In  each case the distur- 
bance amplitude generally decreases in the downstream direction, although in 
some cases there is a momentary increase at  particular y positions. By analogy 
with linear stability theory, one might expect that the amplitude curves would 
retain their shape, provided o l  course that the ribbons excite a single disturbance 
eigenmode. However, there are significant changes in the shapes of the amplitude 
curves in each case, although in each case there is an apparent tendency towards 
self-similarity a t  the most downstream stations. Again calling on stability theory 
for insight, we recognize that a superposition of several eigenmodes having the 
same frequency, but each decaying a t  a different rate in the streamwise direction, 
would not be self-similar but would approach this behaviour far downstream, 
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FIGURE 6 .  Peak of zi amplitude at  different streamwise stations. 

Re = 13800; 0, 25Hz;  0, 50Hz;  0, 75Hz;  v, 100Hz. 

where the most slowly decaying mode would dominate. Thus, we should not be 
surprised to observe changes in the amplitude distribution as the disturbance 
progresses downstream. 

Figure 6 shows the maximum disturbance amplitude as a function of x for the 
four test frequencies. Note that the streamwise decay is most rapid for the highest 
frequencies and that the maximum amplitude (which at different x stations 
occurs at  different y points) decays exponentially after an initial region near the 
ribbon. Exponential decay is indeed the behaviour one would expect from small 
amplitude disturbance theory, and one therefore suspects that the disturbance 
should be modelled adequately by a linear theory. Figure 7 shows the streamwise 
decay at  fixed y stations for each of the four frequencies. The dashed line corre- 
sponds to an exponential de,cay for subsequent use in comparing the data with 
linewized disturbance theories. 

The phase distributions (see figures 2 (b)-5 ( b ) )  also show a somewhat self- 
similar nature. The sudden phase change that takes place midway across the 
flow results from vorticity shed by the oscillating ribbon. In  linearized distur- 
bance theories, a normal-mode disturbance will travel downstream with a self- 
preserving phase distribution, offset by an angle related to the disturbance 
propagation speed. Since the data determine the phase angle only within 
0" < q5 < 360°, some interpretation is needed to relate properly the phases at  two 
streamwise stations. By giving due consideration to the probable magnitude of 
the disturbance propagation velocity (see $ 3  for more detail) we arrived at  the 
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related phase distributions shown, for two y stations, in figure 8. Note that the 
phase advances most slowly for the lowest frequency disturbance. The linearity 
of these curves strongly suggests a constant disturbance propagation velocity, as 
would be expected from a linearized disturbance theory. 

Some insight as to the presence of higher harmonics in the educed signal was 
obtained from oscillascope pictures taken a t  each point. These pictures also 
provided a convenient visual check on the measured amplitudes and phases, and 
on the stability of the educed pattern. The higher harmonics are important only 
very near the ribbon; in the region where exponential decay is observed they 
seem unimportant. For photographs and Fourier analyses of particular wave 
forms see R. 
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FIGURE 8. Phases of .ii at constant distance from the wall. 
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3. Single-mode analysis 
From the discussion above it is clear that the disturbance wave shapes are not 

exactly preserved in the streamwise direction, and hence the disturbance waves 
are not pure modes. A proper analysis of the data will therefore require a multiple- 
mode analysis. However, for the purpose of approximate analysis of the data and 
evaluation of average propagation characteristics, the disturbance will now be 
treated as though it were exactly a single mode. It is also assumed that the 
wave amplitudes are sufficiently small to be treated by linear theory. All quanti- 
ties will be treated as dimensionless, using the channel half-width S and the 
centre-height (z = 0) continuity velocity U, as the reference scales. Note that 
for this flow UJU, = 0.881, where U, is the velocity on the channel centre-line. 

It is usual to represent the two-dimensional normal-mode perturbation wave as 

where * denotes a complex conjugate, Q(y) = [G(y),  O(y), 01 is the two-dimensional 
complex eigenmode shape, a = a,+iai is the (complex) wavenumber, a, being 
the streamwise wavenumber and as the growth factor, and c = c,+ic, is the 
(complex) wave speed. Alternatively, one may write (3.1 a) as 

ii = &{Q(y) ei(az-ot)+ conjugate), ( 3 . l b )  



The mechanics of an  organized wave. Part 2 253 

25 Hz 

56 f 7' 
0.981 f 13 yo 
0.0727 f 10 yo 
0.847 
0.861 13 yo 

6.40 
0.862 
0.465 

0.0638 f 10 yo - 

50 Hz 
107 f 9" 
1-87 f 8.5 yo 

1-692 
0.904 f 8.5 yo 
0.0591 k 12 yo 
3.36 
0.905 
0.420 

0.122 5 12 yo 

75 Hz 
156 f 11' 
2.72 7 yo 
0.196 14 yo 
2.54 
0.93 f 7 yo 

2-31 
0.934 

0.451 

- 0.0672 f 14 Yo 

100 Hz 
204 f 12" 
3-57 6.1 yo 
0.285 f 16 Yo 
3.39 
0.946 f 6.1 yo 

- 0.0755 f 16 yo 
1.76 
0.949 
0.501 

TABLE 1. Wave data. All quantities are dimensionless and normalized using 
&and Urn; U,&/V = 13800, U,lU,, = 0.881. 

where o is the (real) circular frequency of the oscillation. Note that 

c = 0101. (3.2) 

v, = o/a,. (3.3) 

The actual wave phase velocity is 

Within the approximation mentioned above, it is possible to estimate the 
propagating wave characteristics (a,, ai, c, and ci) from the data. For two stations 
x, and x2, both at the same distance y from the wall, 

Hence 

Values of ai as obtained from the average decay estimates shown in figure 7 are 
given in table 1. Positive values of ai, as found in this experiment, are qualita- 
tively consistent with the decaying-wave model of Landahl(l967) and the wall- 
pressure correlation measurements of Willmarth & Wooldridge (1962) and Bull 
(1963) on a flat plate and Corcos (1964) in a pipe. 

From (3.1) it also follows that 

w 2 ,  Y, M m l ,  Y, t )  = exp [ - aik2 - x1) + M X 2  - 2111. 

$(xz, Y7 t )  = $&I, Y, t )  +a,(% - XI) 

(3.6) 

If the phase of .ii is denoted by 4, (3.6) gives 

(3.7) 

and thus a, = (#2- M ( x 2  - 21). (3.8) 

Values of a, deduced from the phase data as interpreted in figure 8 are given in 
table 1. 

Once a,, and ai are known, c can be calculated from (3.2) and V,  from (3.3). 
Also of interest are the wavelength 

h = 2;rr/a,, (3.9) 
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Y P  
FIGURE 9. Inferred (a )  d amplitude and ( b )  d phase distributions a t  25Hz. -, x/S = 4; 
- - , x I S = 6 ;  - - - - , ~ / & = 8 ; - - - * - - - ,  x / S = 1 0 ;  --.-.., x / S = 1 2 ;  -..- , x/S = 14; 

, XIS = 22. -...-, z/S = 18; - .... - 

1.9 

0 0.5 1 .O 

YlS 
FIGURE 10. Inferred (a )  6 amplitude and (6 )  d phase distributions at 

50 He. Notation as in figure 9. 
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and the attenuation factor per wavelength, 

a = aih. (3.10) 

Values of c, V,, h and a are also included in table 1. 
Two features of the data deserve comment. First, we note that the convection 

velocity increases slightly with frequency over the range investigated. Second, 
the attenuation per wavelength is, within the experimental uncertainty, inde- 
pendent of the frequency, with ctila, w 0.07 over the range of frequencies investi- 
gated. 

Some additional remarks on the determination of the phase differences may be 
helpful. In  the polar phase diagrams (figures 2 (b)-5 ( b ) )  one can read the phase 
difference between stations clockwise or counterclockwise, and in each case one 
can also add or subtract multiples of 360". To understand how we unravelled 
this riddle, consider figure 2(b) and concentrate on the phase distribution a t  
stations x/6 = 8,10,12 and 14. The distributions are similar, the phase difference 
between two successive stations being about 120" clockwise. The corresponding 
phase velocity from (3.3) is V ,  = 0.81. If the angle is instead taken counter- 
clockwise, i.e. as 240°, we have V ,  = 0.405. If 360" were added in clockwise 
direction we would obtain V ,  = 0.2, and if 360" were added in the counterclock- 
wise direction V ,  = 0.16. It seems reasonable that these large-scale disturbances 
travel at a speed close to the channel mean speed (which corresponds to V ,  = l),  
hence the clockwise interpretation giving a phase difference of about 120" is 
selected. 

The above comparisons lead one to favour strongly the measurement of phase 
between stations in the clockwise direction. Once this has been decided upon, the 
same system is followed for other frequencies. In  this way the angles measured 
for 50Hz and 75Hz are approximately 215" and 310" respectively. However, 
at 100 Hz the clockwise direction measurement has to be carried out in a slightly 
different way to keep the angles consistent. In  this case an extra 360" must be 
added while measuring the phase difference between two successive stations. This 
yields an average phase difference between two stations of about 410" and a 
corresponding phase velocity V ,  = 0.94. Without this addition of 360" the angle is 
only 50" and the corresponding phase velocity would be V ,  = 0.078. 

For a two-dimensional disturbance the continuity equation is * 

aqax + aqay = 0. (3.11) 

Now, in the single-mode analysis, 

aiilax = ia&eiax-iwt + conjugate. (3.12) 

Using this in (3.11), and writing 

v" = O(x, y) e+t + conjugate, (3.13) 

we have (3.14) 
J u  
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Y P  
FIGURE 12. Inferred (a )  d amplitude and ( b )  d phase distributions at  

100 Hz. Notation as in figure 9. 
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FIGURE 13. Inferred u? distribution. (a) 25 Hz, ( b )  50 Hz, 

( c )  75 Hz and ( d )  100 Hz. Notation as in figure 9. 
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Although one should be careful not to take the calculation too seriously, we did 
compute ij using (3.14) and smoothed curves through the measured Q data; the 
results are shown in figures !3-12. The striking feature is the apparent peakiness of 
v" near the wall for the higher frequency disturbances. This is, indeed, quite 
similar to the behaviour obtained from solutions of the Orr-Sommerfeld equation 
for small amplitude disturbances on a laminar shear flow. Note that the ij curves 
are not self-similar near the ribbon but seem to be progressing towards a self- 
similar shape in the downstream direction. This would be characteristic of a 
disturbance formed from a superposition of a lightly damped and a more heavily 
damped eigenmode. 

Armed with both 4 and i; data, one might be tempted to compute the distur- 
bance Reynolds stress distribution. In  view of the problems arising from a one- 
mode treatment, one should yield to this temptation only after issuing a con- 
siderable warning to the readers, which is implicit in this discussion. The wave 
Reynolds stress is 

Qv" = B(GB*+&*B). (3.15) 

Having cautioned fiercely against substantiative use of these results, we note that 
the wave Reynolds stresses are given in figure 13. 

It should be clear that a direct measurement of v" would be preferable to the 
calculations outlined above. In  addition to those of the wave Reynolds stress, 
one would also like to have direct measurements of the wave-induced fluctuations 
in the turbulent Reynolds stresses: 

- 

__ 
F i j  = <u;u;> - u;u;. (3.16) 

Such measurements are now in progress at Stanford. 

4. Relationships to 'natiiral' flows 
In attempting to compare these data with parameters deduced from various 

filtered correlation data obtained in 'natural' (undisturbed) flows, two points 
must be kept in mind. First, the typical filtered correlation measurements (e.g. 
Wills 1964) include contributions from waves of all obliquities, not just the two- 
dimensional waves. Second, the waves studied here are relatively long in com- 
parison with those studied in most previous experiments. These facts make 
comparisons with most previous data very difficult. However, Landahl (1967) 
pointed out that Corcos's (1 964) wall-pressure data indicate that the wall-pressure 
cross-power spectral density is dominated by waves that are nearly normal to 
the stream. Consequently, it does make some sense to compare our two-dimen- 
sional wave data to  such pressure data. Although the data for boundary layers 
are more extensive, comparison with pipe flows seems more reasonable, and we 
shall use Corcos's (1964) pipe data for this comparison. 

One of the most striking observations in Corcos's data, also observed by 
Willmarth & Wooldridge (1962), is that the amplitude of the wall-pressure cross- 
power spectral density depends only upon the parameter wg/:/vc, where 6 is the 
separation distance in the streamwise direction. In  figure 14 we have replotted 



The mechanics of an organized wave. Part 2 

- 

- 
- 
a 

u3" - 0.4 - - 

0.2 I I I , I  I I I I I 
0 2 4 6 8 10 

259 

dK 
FIGURE 14. Comparison of wall-pressure cross-power spectral density. 

-, Corcos's data; - - -, equation (4.7). 

Corcos's data on semi-log paper; the striking similarity with figure 6 should be 
noted. For long separation distances the behaviour is essentially exponential, 
which is consistent with our small-disturbance model. 

If we view the turbulence in a pipe as being composed of a superposition of 
weak waves and assume that the pressure will be dominated by long two- 
dimensional waves of the type studied here, a direct quantitative comparison can 
be made. We represent the contribution of a single wave to the wall pressure by 

(4.1) 

Here the superscript n denotes the nth wave. It seems reasonable to assume that 
the waves are uncorrelated, i.e. that 

f l =  fj; exp { - ayx + iapx + iot} + conjugate. 

(92 fig*) = An anme ( 4 4  

Here ( ) denotes an ensemble average. Then the autocorrelation of the wall 
pressure is 

= I An I 2 exp { - 2arx - a?[ - ia,"[ - ~ w " T )  + conjugate. (4.3) 

Now, the harmonic decomposition with respect to r defines the cross-power 
spectral density. We see that the amplitude of the cross-power spectral density 
should behave like (see Landahll967) 

n 

IS,,(W)~ N x IAn12e-Lf5. (4.4) 
n 

This may be written as 

~ x p p ( u ) l  N C. n lAnl2exp [ -5 a:~) (4.5) 

I 7-2 
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FIGURE 15. Comparison of canvection velocities for with Corcos’s data for pipe flow. 

-, Corcos’s data based on wall pressures; 0, present data. 

The experiments deal with the ‘least-damped’ modes, which of course will 
dominate lSppl for large c. For these modes we find = 0.07, and hence for 
large E we would expect IS,,, I to depend only upon the parameter w[/V,, as indeed 
is found experimentally. For large 5 the least-damped mode should dominate, 
and hence we would expect 

I S,, I N constant x exp { - 0-07wLJQ as 5 --f co. (4.7) 

The dashed line in figure 184 shows this asymptotic behaviour, which is in re- 
markable agreement with CIorcos’s data. 

Corcos also measured the convection velocity of the wall-pressure disturbances. 
If we again assume that the two-dimensional waves dominate the wall pressure, 
then a comparison can be made. Figure 15 shows Corcos’s data; f is  the frequency 
(Hz), d is the pipe diameter and 0 is the ‘mean discharge velocity’ for the pipe. 
Using 2Sinstead of d and Urn for g ,  the present data are also shown. Note that the 
present experiments are confined to relatively low frequencies and that values 
comparable with Corcos’s are found, although the trends with frequency seem to 
be in opposite directions. This might be due to dominance of more strongly 
oblique waves a t  the higher frequencies. 

The close association between our data for two-dimensionalwaves and Corcos’s 
wall-pressure data provides considerable support for the notion that it is useful to 
view shear-flow turbulence as waves (Landahl 1967). 

5. Concluding remarks 
The results given here provide the first real means of testing model equations 

purporting to describe the behaviour of wavelike disturbances in a turbulent 
shear flow. Although the ii data are reported with some confidence, the inferred 
fi data should be used with caution, pending direct experimental measurement. 
The work described in this paper is now being extended at Stanford using a 
better technique (cross-correlation) for sifting out the periodic component of the 
hot-wire signal, and in due course we shall be able to provide theoreticians with 
good measurements of both the wave components ii, and the wave-induced 
Reynolds stress fluctuations Fij for a well-documented turbulent channel flow. 
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Additional interpretation of these data, in relationship to pending theoretical 
models, is given in part 3 of this investigation (Reynolds & Hussain 1972). 

This work is sponsored by the Mechanics Branch of the Air Force Office of 
Scientific Research and by the National Science Foundation; their assistance is 
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